首页> 外文OA文献 >Improving Correlation with Human Judgments by Integrating Semantic Similarity with Second--Order Vectors
【2h】

Improving Correlation with Human Judgments by Integrating Semantic Similarity with Second--Order Vectors

机译:语义学整合提高与人类判断的相关性   与二阶向量的相似性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Vector space methods that measure semantic similarity and relatedness oftenrely on distributional information such as co--occurrence frequencies orstatistical measures of association to weight the importance of particularco--occurrences. In this paper, we extend these methods by incorporating ameasure of semantic similarity based on a human curated taxonomy into asecond--order vector representation. This results in a measure of semanticrelatedness that combines both the contextual information available in acorpus--based vector space representation with the semantic knowledge found ina biomedical ontology. Our results show that incorporating semantic similarityinto a second order co--occurrence matrices improves correlation with humanjudgments for both similarity and relatedness, and that our method comparesfavorably to various different word embedding methods that have recently beenevaluated on the same reference standards we have used.
机译:度量语义相似性和相关性的向量空间方法通常依赖于分布信息,例如共现频率或关联的统计量度,以加权特定共现的重要性。在本文中,我们通过将基于人类策划的分类法的语义相似性度量纳入二阶向量表示法来扩展这些方法。这导致了一种语义相关性的度量,该度量将基于语料库的向量空间表示中可用的上下文信息与生物医学本体中发现的语义知识相结合。我们的结果表明,将语义相似度合并到二阶共现矩阵中可改善与人类判断的相似度和相关性之间的相关性,并且我们的方法可与最近在相同参考标准上进行评估的各种不同单词嵌入方法进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号